If it's not what You are looking for type in the equation solver your own equation and let us solve it.
28x^2+1=13x+7
We move all terms to the left:
28x^2+1-(13x+7)=0
We get rid of parentheses
28x^2-13x-7+1=0
We add all the numbers together, and all the variables
28x^2-13x-6=0
a = 28; b = -13; c = -6;
Δ = b2-4ac
Δ = -132-4·28·(-6)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-29}{2*28}=\frac{-16}{56} =-2/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+29}{2*28}=\frac{42}{56} =3/4 $
| -0.3(0.7x-0.9=-1.83 | | 10x^2+20x=150 | | (X+3)+(y+3)=42 | | 2x-x=123 | | X^2-10x+30=54 | | 3=x+24/6 | | 15=2p+9-5p | | x2+(3x)=700 | | 35=9×x | | 9^(-9y)=2 | | Y=20+13x | | m=4=14 | | 4x/x-3=2+12/x-3 | | x=3=5x-7 | | 2^x+3=64 | | b.2=10 | | 2x-9/4=x+2 | | b×2=10 | | 3u^2-12u+6=0 | | 5x^2-5=420 | | -5(a+3=-15 | | (4x+4)+12x+2x+((4x+4)-2x)+(12x-(6x-3))+(6x-3)=360 | | 6z-z=-2+3z-1-1 | | 3(2-x)=10 | | (51/5)5=25x | | 4x+4+12x+2x+(4x+4-2x)+(12x-6x-3)+6x-3=360 | | 1=7v-9 | | 7v=48+v | | 5^4=125^x-1 | | 10^2x=495 | | 3t2+18t=0 | | (3x-36)=90 |